TOP QUARK PHYSICS THEORETICAL OVERVIEW

David Rainwater
University of Rochester

HCP 2006
Duke University
May 23, 2006

- top quark properties
- issues in pair production
- issues in single production

Contents

What I will cover:

- · top properties status and needs
- · simulation issues in top pair production
- · simulation issues in single-top production
- theory task list

What I will not discuss:

- · rare top decays
- \cdot $t\bar{t}$ or $t\bar{b}$ resonances
- · ILC

THE TOP QUARK CANDIDATE

What is the top quark in the SM? up-isospin partner of b

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \quad u_{R} \quad d_{R} \qquad \begin{pmatrix} v_{e} \\ e \end{pmatrix}_{L} \quad e_{R}$$

$$\begin{pmatrix} c \\ s \end{pmatrix}_{L} \quad c_{R} \quad s_{R} \qquad \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix}_{L} \quad \mu_{R}$$

$$\begin{pmatrix} t \\ b \end{pmatrix}_{L} \quad t_{R} \quad b_{R} \qquad \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix}_{L} \quad \tau_{R}$$

THE TOP QUARK CANDIDATE

What is the top quark in the SM? up-isospin partner of b

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \quad u_{R} \quad d_{R} \qquad \begin{pmatrix} v_{e} \\ e \end{pmatrix}_{L} \quad e_{R}$$

$$\begin{pmatrix} c \\ s \end{pmatrix}_{L} \quad c_{R} \quad s_{R} \qquad \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix}_{L} \quad \mu_{R}$$

$$\begin{pmatrix} t \\ b \end{pmatrix}_{L} \quad t_{R} \quad b_{R} \qquad \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix}_{L} \quad \tau_{R}$$

- → measure all the candidate's quantum numbers!
 - 1. mass: measured to 1.5%, consistent w/ EW precision data
 - 2. spin: not measured directly, but $\sigma_{t\bar{t}}$ consistent w/ QCD & $S = \frac{1}{2}$
 - 3. charge: $Q = +\frac{2}{3}$ or $-\frac{4}{3}$? Tev2 data consistent w/ $+\frac{2}{3}$
 - 4. <u>lifetime / total width</u>: unknown; need single-top signal
 - 5. gauge couplings: $\sigma_{t\bar{t}}$ consistent w/ QCD; $t\bar{t}Z/t\bar{t}\gamma$ constrained but not directly measured; $t\bar{b}W$ also not directly measured, but decay consistent w/ $SU(2)_L$
 - 6. Yukawa coupling: not measured (need $t\bar{t}H$ signal @ LHC)

Top properties - is it really SM?

- ► Γ_t (lifetime): $\propto g_W V_{tb}$ ($\tau_t = 4 \times 10^{-25}$ s; $\Gamma_t = \hbar/\Gamma_t = 1.4$ GeV)
- → need single-top

Process	Tevatron Run 2 (t)	LHC (t)	LHC (t̄)
$\sigma_{t-ch.}^{NLO}$ (a)	$0.99^{+.14}_{11}$ pb	155.9 ^{+7.5} _{-7.7} pb	90.7 ^{+4.3} _{-4.5} pb
$\sigma_{s-ch.}^{NLO}$ (b)	$0.442^{+.061}_{053} \text{ pb}$	6.56 ^{+.69} ₆₃ pb	4.09 ^{+.43} ₃₉ pb
σ_{tW}^{LL} (c)	$0.065 \pm O(10\%) \text{ pb}$	$33 \pm o(10\%) \text{ pb}$	$33 \pm o(10\%) \text{ pb}$

NLO uncertainties mostly < 10%: [cf. Sullivan, PRD(72)094034(2005)] $\delta m_t \sim 1$ GeV would improve these a lot, as will PDF meas'mts at LHC

 \rightarrow but σ_{tX} does NOT measure *total* width! (must convolve with $\sigma_{t\bar{t}}$ result and some assumptions)

Top properties - is it really SM?

- ► $t\bar{t}$ spin correlation (related to lifetime): $\tau_{\rm flip} \propto m_t/\Lambda_{QCD}^2$ spin correlations if $\tau_t \ll \tau_{\rm flip}$: implies $|V_{tb}| > 0.03$
- \rightarrow plot $t\bar{t}$ double differential distribution

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d(\cos \theta_i) d(\cos \theta_{\bar{i}})} = \frac{1}{4} (1 - C \alpha_i \alpha_{\bar{i}} \cos \theta_i \cos \theta_{\bar{i}})$$

C different for $q\bar{q}, gg$ initial states $(C_{q\bar{q}}, C_{gg})$

 $\alpha_i, \alpha_{\bar{i}}$ are the spinanalyzing powers (leptons are best)

Choice of optimal basis depends on initial state.

NLO effects now done — important shifts for all *C*

Top properties - gauge couplings

- $ightharpoonup g_{ttg}$ essentially measured to be QCD
 - → do anom. coup. analysis (no Tevatron studies yet!)
- $ightharpoonup g_{tbW}$ looks SM-like (but with large uncertainty)
 - \rightarrow convolved with V_{th}
 - \rightarrow treat deviation as anom. coup. ($\sigma^{\mu\nu}$ term w/ F_2^L, F_2^R) study in $t\bar{t}$ decays & single-top prod'n

Tevatron w/ 2 fb⁻¹: $-0.18 < F_2^L < +0.55 & -0.24 < F_2^R < +0.25$ (but needs much further study)

- $ightharpoonup g_{tt\gamma}$, g_{ttZ} essentially unprobed
 - → not known directly
 - \rightarrow can't see $q\bar{q} \rightarrow Z/\gamma^* \rightarrow t\bar{t}$, must measure $t\bar{t}Z \& t\bar{t}\gamma$ rates
 - \rightarrow Tev2 can do 1st rough $g_{tt\gamma}$ measurement

Top properties - Yukawa coupling

SM Yukawa Lagrangian term:

$$\mathcal{L}_Y = -Y_t \overline{\Psi}_L \Phi^c t_R + \text{h.c.}$$

$$\rightarrow -Y_t \frac{v}{\sqrt{2}} \overline{t}_L t_R + \text{h.c.} + \dots$$

$$v = 256$$
 GeV, $m_t = 175$ GeV, so $Y_t \approx 1 \longrightarrow very$ suspicious!

▶ Does top have a special role in EWSB?

Need $t\bar{t}H$ observation to say; sadly, Tev can't do this...

Note top quark myth: " W_0 fraction in top decays measures Y_t "

$$\mathcal{F}_0 = \frac{m_t^2 / M_W^2}{1 + m_t^2 / M_W^2}$$

Here, m_t is kinematic mass, not $Y_t \frac{v}{\sqrt{2}}!$

 \rightarrow all EWSB models predict same \mathcal{F}_0 , regardless of Y_t !

Top properties - CP violation?

Is there *CP*-violation in the top sector? We don't expect it.

 $ightharpoonup p\bar{p}$ collisions at Tev2 are ideal!

$$A_t^{CP} = \frac{\sigma(t) - \sigma(\bar{t})}{\sigma(t) + \sigma(\bar{t})}$$

But single-top will barely be seen at Tevatron as it is...

▶ pp collisions at LHC make this more complicated – compare:

$$egin{align} \left\langle ec{s}_t \cdot ec{p}_b imes ec{p}_{\ell^+}
ight
angle & ext{v.} \ \left\langle ec{s}_{ar{t}} \cdot ec{p}_{ar{b}} imes ec{p}_{\ell^-}
ight
angle \ & p_T(\ell^+) \ ext{v.} \ p_T(\ell^-) \end{aligned}$$

or

Both should work quite well [cf. Schmidt & Peskin, PRL(69)410(1992)] (but p_T -imbalance subject to non-trivial detector effects)

STUDYING TOP QUARK PAIRS

Must study properties, but how?

Points to consider:

- ▶ $\sigma_{t\bar{t}}$ at Tev2: NLO+NLL+NNLL correc.'s ~ +40%, theory uncer. ~ 14% but experimental uncer. < 10% → need full NNLO (hard!)
- $ightharpoonup \sigma_{t\bar{t}}$ in simulation: what we need to include
 - · NLO corrections & additional hard radiation
 - · spin correlations
 - · off-shell kinematics (Breit-wigner lineshape)
 - · anomalous couplings
 - ?? what's actually available??
- ▶ off-shell top production: difficult but crucial issue at LHC: top is largest bkg to WBF $H \rightarrow W^+W^- \rightarrow \ell^+\ell^- + X$ (not yet an issue, but doubles naïve top bkg at LHC) \rightarrow *must* simulate fully off-shell [Kauer, PRD65:014021,2002]

Modeling hard jets in $t\bar{t}$ events

- ▶ Parton shower MC's underestimate hard jet activity in $t\bar{t}$:
- · +1j rates not bad, but serious fine-tuning needed!
- $\cdot + \geq 2j$ rates fall off dramatically compared to matrix elements
- > Parton shower MC's don't know the correct normalization:
- · kinematic distributions change at higher orders
- ➤ Only PSMC gets soft jets correct (log resummation via shower)

Modeling hard jets in $t\bar{t}$ events

- ▶ Parton shower MC's underestimate hard jet activity in $t\bar{t}$:
- · +1j rates not bad, but serious fine-tuning needed!
- $\cdot + \geq 2j$ rates fall off dramatically compared to matrix elements
- > Parton shower MC's don't know the correct normalization:
- · kinematic distributions change at higher orders
- ➤ Only PSMC gets soft jets correct (log resummation via shower)

This is addressed on two fronts: NLO, and LO large jet multiplicity

- 1. NLO event generation not easy:
 double-counting & matching issues
 how to handle negative weights?
- 2. For large hard-jet multiplicity, need exact $t\bar{t}+j^n$ matrix elements same problem as above \rightarrow how to merge with PSMC?

NLO tt event generators

NLO event generator not easy: double-counting & matching issues

→ leading program is MC@NLO, interfaced to HERWIG

[Frixione & Webber, JHEP 0206:029(2002); +Nason, JHEP 0308:007(2003)]

- M.E. matching by removing 1st shower emission part from NLO calc.
- o formally proven to not double count; produces smooth dist'bns

only publicly-available NLO MC code; but doesn't include spin

Summary of available tt MC

Code	PSMC	events	NLO	$t\bar{t}$	t_{s}	t_t	t_{tW}	$+j^n$ ME	BW	spin
HERWIG	$\sqrt{}$	$\sqrt{}$							$\sqrt{}$	$\sqrt{}$
PYTHIA	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$
SHERPA	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$
ALPGEN		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
ACERMC		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
СомрНЕР		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
MADEVENT		$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
MC@NLO	*	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$					
MCFM			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
SINGLETOP		$\sqrt{}$	**		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
TOPREX					$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
ZTOP			$\sqrt{}$							
ONETOP			$\sqrt{}$							$\sqrt{}$

^{* =} interfaces with HERWIG

^{** =} partially

STUDYING SINGLE-TOP

Single-top production at Tev2/LHC

3 possibilities for production, all are $\propto V_{tb}^2$:

- (a) *t*-channel features forward-scattered light-quark jet sensitive to FCNC's
- (b) s-channel accompanied by 2nd b-jet sensitive to charged resonances
- (c) tW-associated final-state real W; overlaps $t\bar{t}$ signature most direct measure of V_{tb} , but low rate

s-,t-channels are windows to new physics

[Tait & Yuan, PRD(63)014018(2001)]

Some examples for Tevatron Run II:

- SM
- \circ FCNC Z-t-c vertex, $\kappa = 1$
- \times Topflavor, $M_{Z'} = 1$ TeV
- + Topcolor, $m_{\pi^{\pm}} = 250 \text{ GeV}$
- * 4th generation, $V_{tb} = 0.835$

s-,t-channels are windows to new physics

[Tait & Yuan, PRD(63)014018(2001)]

Same examples for LHC:

- SM
- \circ FCNC Z-t-c vertex, $\kappa = 1$
- \times Topflavor, $M_{Z'} = 1$ TeV
- + Topcolor, $m_{\pi^{\pm}} = 450 \text{ GeV}$
- * 4^{th} generation, $V_{tb} = 0.835$

This leaves tW-associated production as the "purest" measurement of V_{th}

Theoretical issues for s-channel production

NONE!

 \rightarrow NLO distributions change negligibly – just apply K-factor (doesn't mean $t\bar{t}$ background goes away...)

Theoretical issues for t-channel production

Is a little more complicated, because the above is really:

- (b) if an extra b is observed at large scattering angle (high- p_T)
- (a) b-q process only when the 2^{nd} b (gluon splitting) is collinear
- ► NLO corrections change distributions significantly

New NLO Monte Carlo for t-channel prod'n

- ► MC @ NLO [Frixione, Laenen, Motylinski & Webber, JHEP 0306:092(2006)]
- · technically harder than $t\bar{t}$ due to final-state collinearities
- · again produces smoothly-merged distributions w/ HERWIG

- · confirms feasibility of MC@NLO formalism for general processes
- · but no spin correlations!
- ► SINGLETOP [Boos *et al.*; see TeV4LHC proceedings]
- · not as complete as MC@NLO, but is 2nd practical package

Discerning s,t-channel signals

Advanced variable-discriminant LO analysis by Bowen *et al*. [PRD(72)074016(2005)] now @ NLO by Sullivan [PRD(72)094034(2005)]. New features:

· full NLO: confirms LO angular correlations are ok

Discerning s,t-channel signals

Advanced variable-discriminant LO analysis by Bowen *et al*. [PRD(72)074016(2005)] now @ NLO by Sullivan [PRD(72)094034(2005)]. New features:

- · full NLO: confirms LO angular correlations are ok
- · better-optimized scheme for choosing correct b
 - \rightarrow top-decay b has smallest $\cos \theta_{\ell j_i}^t$ in candidate t rest frame

Discerning s, t-channel signals

Advanced variable-discriminant LO analysis by Bowen et al. [PRD(72)074016(2005)] now @ NLO by Sullivan [PRD(72)094034(2005)].

New features:

- · full NLO: confirms LO angular correlations are ok
- · better-optimized scheme for choosing correct b
 - \rightarrow top-decay b has smallest $\cos \theta_{\ell j_i}^t$ in candidate t rest frame
- · full angular correlation matrix between chosen b and j,ℓ

- \rightarrow using $both \cos^t_{bj_1}$ and $\cos^t_{\ell j_1}$ dramatically improves S/B
- · superior to all previous analyses

Theoretical issues for tW-associated production

Even worse overlap issue than *t*-ch.!

is really —

 \circ how to deal with $t\bar{t}$ overlap??

Theory solution for tW-associated production

[Alwall, Campbell, Maltoni & Willenbrock, 2006; see Portugal talk]

Core issue: at high- p_T , 2^{nd} b gives strong interference with $t\bar{t}$; tW is ill-defined (to all orders).

Previous schemes to address either can't give event generators or don't preserve gauge invariance.

Proper solution: Veto the $2^{\text{nd}} b$, demanding only 1 be observed.

ightarrow calculate at NLO with $\mu_F \equiv p_T^{
m veto}$

Nice and stable! \longrightarrow

[Campbell & Tramontano, NPB(726)2005]

SUMMARY

- The $m \sim 175$ GeV pole fits SM top, but not fully verified!
- Tev2 has verified charge, can maybe make rough $t\bar{t}\gamma$ and some other measurements ($t\bar{t}$ spin correlations?)
- Right now, theory lags far behind experimental capability.
 new tools available, but still long way to go
- NLO generators are truly wonderful,
 but now need decays w/ spin correlations
- LHC will be great for top physics,
 but top is also worst background to new physics
 - → Tev2 is opportunity to improve/test tools before the flood